

Al Powered Weather Forecast

Alibaba Cloud Intelligence

Milestones of Alibaba Cloud Intelligence

Past 10 years

Cloud	Self-developed Apsara	Intelligence Platform	Innovation & Cost			
 2009 2019 Few >80% Knew Will 	Image: Second systemImage: Second systemImage: Second system200920132018200920132018First Cloud5K1st PrizeOS in ClusterClusterof CIEChinaClusterof CIE	Image: Descent to the constraint of the constraint	Image: Second systemImage: Second system2009201920092019HighCloud-Cloud-basedITbasedITinnovation			
Market Share	Global IDC	Core Technology	National Affairs			
2009 2019 Newly No.1 in Established China No.3 in Global	2009 2022 Start from 27 Regions China 84 AZ	2009 2009 Development of Apsara Dragon/PolarDB/ Flink	2012 2015 2017 First 12306 Weibo Double Travel Peak 11 rush Flow			

Coming 10 years

4 Trend of Digital Infrastructure Modernization

Cloud Reliable and easy-to-use cloud Digitization Big data and intelligence

ΙοΤ Cloud-integrated IoT

Mobile Mobile collaboration anytime, anywhere

Alibaba Cloud Product Portfolio

Cloud Native

Container Service for Kubernetes

Container Registry

Message Queue for Apache RocketMQ

Enterprise Distributed Application Service (EDAS)

Apsara Video Live/VOD

ChatApp

Edge Compute

CDN/DCDN

Short Message Service

Database

RDS for MySQL	ApsaraDB for Redis	PolarDB for MySQL
RDS for SQL Server	ApsaraDB for MongoDB	PolarDB for PostgreSQL
RDS for PostgreSQL	Data Transmission Service	AnalyticDB for MySQL
RDS for MariaDB TX	Data Management	AnalyticDB for PostgreSQL
DBStack	Database Backup	Data Lake Analytics

	Elastic Compute	HPC	Storag
	Elastic Compute Service	Super Computing Cluster	Object Storage
lres	Elastic Bare Metal Instance	Electic Llich Derfermence	Block Stora
uctu	Simple Application Server	Computing	File Stora
str	Elastic GPU Service	Batch Compute	Apsara File Stor
nfra	Elastic Desktop Service		Log Servi
	Dedicated Host		Tablesto

Data Intelligence

IOT

IoT Cloud Service

IoT Network Service

IoT Security Service

Link IoT Edge

Device Development Service

Application service

Domains&Website

Energy Expert

Corporate Office Collaboration

Blockchain as a Service

eKYC

Big Data & Al

MaxCompute DataWorks Elasticsearch

> Hologres Vision Al

E-MapReduce

Realtime Compute for Apache Flink

Quick BI

PAI

Image Search

Security

Service Security (Managed Security Service)

Business Security (Game Shield / Content Moderation)

Data Security (Key Mgmt. Service/Data Encryption Service)

Infrastructure Security (Anti-DDos/Cloud Firewall/Certificate Mgmt. Service/Security Center/Web Application Firewall)

Identity Security (ActionTrail/Resource Access Mgmt.)

je	Net	work	Hybrid Cloud
e Service	Cloud Data Transfer	Cloud Enterprise Network	Apsara Stack
age	Express Connect Smart Access Gateway		Cloud Box
rage NAS	NAT Gateway	Global Acceleration	Local Region
ice	Server Load Balancer	Elastic IP Address	Local Region
ore	VPN Gateway	Shared Bandwidth	SOFAStack
ice ore	Server Load Balancer VPN Gateway	Elastic IP Address Shared Bandwidth	Local Region SOFAStack

6 hours DL-based Nowcasting: longer and more accurate

Multi-source data

GFS (u/v/q)

GFS	Lead time	TS_0.1	TS_5	TS_10	TS_20	TS_30
	3h	0.4551	0.2896	0.2194	0.1670	0.1260
	6h	0.3264	0.1973	0.1548	0.1055	0.0748
\checkmark	3h	0.4969	0.2869	0.2098	0.1789	0.1448
\checkmark	6h	0.3979	0.2147	0.1665	0.1498	0.1147

Nowcasting using radar base reflectivity of different levels

Conclusions

- Multi-level input is better than single level: data from convection development level facilitate the prediction of storm strength and trend
- Multi-level output is better than single level: more information to be supervised
- Channel attention further boost forecast performance

Model		Input levels	Target level	Eval. level	Ch. Atten.	# Params	Lead time	TS20	TS30	TS40	BIAS20	BIAS30
UNet	А	2.5 km	2.5 km	2.5 km		30.45 M	3h	0.4099	0.2654	0.1244	0.8064	0.5746
	В	(0.5 <i>,</i> 2.5 <i>,</i> 6) km	2.5 km	2.5 km		30.45 M	3h	0.4202	0.2749	0.1356	0.7889	0.5771
	С	(0.5 <i>,</i> 2.5 <i>,</i> 6) km	(0.5 <i>,</i> 2.5 <i>,</i> 6) km	2.5 km		30.53 M	3h	0.4260	0.2799	0.1410	0.7636	0.5582
	D	(0.5 <i>,</i> 2.5 <i>,</i> 6) km	(0.5 <i>,</i> 2.5 <i>,</i> 6) km	2.5 km	\checkmark	31.46 M	3h	0.4447	0.3051	0.1519	0.8625	0.6564

ground truth

A (2.5km)

0.5km

2.5km

6km

B (2.5km)

C (2.5km)

D (2.5km)

Preliminary Results on Using Satellite Data for Nowcasting

Motivation:

- Lack of observing and monitoring infrastructure, including radar in LDCs and SIDS
- Terrain blockage of radars in mountainous area •
- Satellite data has better spatial coverage than radar data ●

Sparse radar distributions in the western China

Promising results using satellite data for nowcasting

NO	Radar	Satellite	TS2 0	TS35	TS45	
А			0.366032	0.174292	0.044409	С
В			0.300933	0.140818	0.043290	С

Pure Data-Driven Weather Forecasting Model: SwinVRNN

- SwinVRNN Model = Deterministic SwinRNN + Perturbation Module
- Difference of SwinRNN from previous convolutional RNNs (e.g., ConvLSTM, ConvGRU):
- 1) Recurrent design: extracts features from all the historical frames at once, more memory-efficient
- 2) Memory update: Replace gates with self-attention
- 3) Multi-scale prediction: Use features of different spatial resolutions
- 4) Residual prediction: forecast 6 hour changes in variables instead of variables themselves
- Data: 6 hourly ERA5 reanalysis data of 5.625° from WeatherBench dataset (Rasp et al., 2020)

Training and testing:

1979 – 2016 for training, 2017 – 2018 for testing 36 hour historical input training on *5 days and test up to 14 days* Res

C-JAlii

Overall architecture of SwinVRNN

				F	MSE (5 days)	
sidual Add	Multi-scale	Swin Attention	Z500 $(m^2 s^{-2})$	T850 (K)	T2M (K)	TP (
~	~	✓	428	2.20	1.75	2.1
\checkmark		\checkmark	431(+3)	2.22(+0.02)	1.80 (+0.05)	2.21 (-
	\checkmark	\checkmark	450 (+22)	2.29(+0.09)	1.88 (+0.13)	2.21 (-
\checkmark	\checkmark		489(+61)	2.41 (+0.21)	1.88 (+0.13)	2.18 (-

Note. Latitude-weighted RMSE scores for 5 day forecasts of Z500, T850, T2M, and TP are reported. The lower the better

Pure Data-Driven Ensemble Weather Forecasting Model: SwinVRNN

Perturbation Methods:

- 1) Fixed distribution perturbation (FourCastNet)
- 2) Learned distribution perturbation: spatially and variable dependent
- 3) Model parameters perturbation: apply MC dropout in both training and inference to mimic the perturbed physics ensembles
- 4) Multi model ensemble: tune the architecture of SwinVRNN, e.g. depth of the Swin decoder.

Advantage:

Speed: 44 seconds
 for 100 member
 forecasting using a
 single NVIDIA Tesla
 V100 GPU

		I	RMSE (5 days	C	CRPS (5 days/14 days)				
Backbone	Perturbation Method	Z500 $(m^2 s^{-2})$	T850 (K)	T2M (K)	TP (mm)	Z500 $(m^2 s^{-2})$	T850 (K)	T2M (K)	
SwinRNN		431/972	2.20/4.25	1.75/3.28	2.17/2.40	339/764	1.76/3.44	1.40/2.63	
SwinRNN	fixed distribution	431/952	2.20/4.13	1.75/3.25	2.17/2.36	303/646	1.66/2.94	1.27/2.28	
SwinRNN	MC dropout	426/909	2.18/3.94	1.73/3.08	2.18/2.32	306/597	1.59/2.72	1.25/2.25	
SwinVRNN	learned distribution	409/803	2.10/3.51	1.68/2.73	2.16/2.31	242/483	1.31/2.18	1.05/1.67	
SwinVRNN	multi-model	401/795	2.07/3.47	1.64/2.70	2.16/2.30	232/473	1.26/2.14	0.99/1.63	
Clare et al. (2021)	MC dropout	627/-	2.91/-		-	1500/-	1.69/-		
IFS ensemble	2 	297/-	1.73/-	1.57/-	2.15/-	127/-	0.83/-	0.70/-	

Note. Latitude-weighted RMSE and CRPS for 5 day and 14 day forecasts of Z500, T850, T2M, and TP are reported. The lower the better.

Example of a learned covariance matrix

Pure Data-Driven Ensemble Weather Forecasting Model: SwinVRNN

Ensemble spread for Z500 prediction over London, Barbados, Beijing and Sydney.

Advantage:

• Accuracy: outperform IFS on T_{2M} and TP variables up to 5 days at spatial resolution of 5.625°

	RMSE (3 days/ 5 days/ 14 days)								
Method	$Z500 (m^2 s^{-2})$	T850 (K)	T2M (K)	TP (m					
Weekly climatology	816	3.50	3.19	2.32					
T42 T63 IFS	489/743/- 268/463/- 154/334 /-	3.09/3.83/- 1.85/2.52/- 1.36 /2.03/-	3.21/3.69/- 2.04/2.44/- 1.35/1.77/-	2.36/2.5					
Naïve CNN Cubed UNet ResNet (pretrained) FourCastNet	626/757/- 373/611/- 284/499/- 240/480/-	2.87/3.37/- 1.98/2.87/- 1.72/2.41/- 1.50/2.50/-	1.48/1.92/- 1.50/2.00/-	2.23/2.3 2.20/2.5					
SwinRNN SwinVRNN SwinVRNN*	207/392/882 219/397/788 211/388/783	1.39/2.05/3.90 1.47/2.06/3.45 1.43/ 2.02/3.43	1.18 /1.63/2.98 1.25/1.66/2.69 1.21/ 1.61/2.67	2.01/2.14 2.06/2.17 2.05/2.16					

Comparison with SOTA

Pure Data-Driven High-Resolution Weather Forecasting Model: SwinRDM

SwinRDM = SwinRNN+ and Conditional diffusion model

- ✓ SwinRNN+: Improved version of SwinRNN:
- Replace multi-scale network with single-scale network with higher feature dimension
- Multi-Layer Feature Aggregation

✓ Diffusion super-resolution model Improve resolution from 1.40525° to 0.25°

Dataset: 6 hourly ECMWF ERA5 data at spatial resolution of 0.25°, 1979 – 2016 for training, 2017-2018 for testing

ior courry						10									
U						Feat. Dim.	Feat. Fusion	Z500	T850	T2M	TP				
						128		456	2.354	2.196	2.265				
						128	\checkmark	386	2.050	1.926	2.182				
						256		394	2.092	1.957	2.207				
Feat. Dim.	Multi-Scale	Mem.	Params	Z500	T850	256	\checkmark	371	1.971	1.843	2.148				
128		12.0G	4.0M	417	2.182										
128	\checkmark	13.1G	62.5M	386	2.050	Effectiv	veness of i	multi-	layer	featu	re o				
256		14.1G	15.5M	374	1.998		adara	aatio	n		5	uper-re	Solutio	on moc	aei com
256	\checkmark	23.7G	248.6M	371	1.971		ayyıc	yallu	11	1					
384		19.4G	34.8M	359	1.929					Me	ethods	CSI2	CSI5	CSI10	CSI20
512		25.2G	61.6M	354	1.912					Bi	linear	0.171	0.051	0.006	0.000
8 <u></u> 8%		and 192 (2000)	5-9: WEALS	62622						Sw	inIR	0.186	0.069	0.013	0.001
		inala								Sw	inRDM	0.246	0.179	0.111	0.046
muill-S	cale and s	ingle-	scale c	ompa	INSON					Sw	inRDM*	0.262	0.190	0.123	0.049

Pure Data-Driven High-Resolution Weather Forecasting Model: SwinRDM

Conclusions:

 SwinRDM outperforms ECMWF IFS at the spatial resolution of 0.25 for 500 hPa geopotential, 850 hPa temperature, 2-m temperature, and total precipitation, at lead times up to 5 days.

Methods	Z500	T850	T2M	
IFS	154/334	1.36/2.03	1.35/1.77	2.3
SwinRNN	207/392	1.39/2.05	1.18/1.63	2.0
SwinRNN+	152/316	1.12/1.75	0.99/1.42	1.8
SwinRDM	156/316	1.23/1.83	1.07/1.49	2.0
SwinRDM*	153/313	1.15/1.76	1.01/1.43	1.8

ERA5 WS $[m s^{-1}] t=0h$

ERA5 WS [m s⁻¹] t=72h ERA5 WS [m s⁻¹] t=120h SwinRDM* WS [m s⁻¹] t=0h SwinRDM* WS [m s⁻¹] t=72h SwinRDM* WS $[m s^{-1}] t=120h$

SwinRDM is able to predict Super Typhoon Mangkhut

DL-based Water Bodies Recognition using Synthetic-aperture radar (SAR)

Motivation

It is too time consuming for human experts to track the changes in size of water body, more efficient methods are required, especially during flood period.

What we did for the Ministry of Water Resource of China in 2020

- Use SAR over satellite images: Works 24 hours and all weather conditions such as cloud, fog, rain, or snow, etc.
- Transfer learning applied to make the model available within 1 week

WRF-DL: A Bridge between WRF and Deep Learning Parameterizations

Methodology:

- Use the C Foreign Function Interface (CFFI) to call Python function in Fortran
- Similar to WRF I/O quilt processors, DL model inference can be done using either with exclusive processors or the same processors for WRF calculations

Synchronous sequence implementation between WRF and DL-based parameterization

Tech for Innovation

Alibaba Cloud Intelligence

